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1. FORMULATION OF THE PROBLEM AND THE MAIN RESULTS
We study an initial–boundary value problem for the three-dimensional equations of motion of a baro-

tropic viscous gas. The gas is assumed occupy a bounded domain . Its state is completely charac-
terized by the density distribution  and the velocity field . The problem is to find  and  sat-
isfying the following equations and boundary and initial conditions in the cylinder :

, (1.1a)
, (1.1b)

, (1.1c)
. (1.1d)

Here,  denotes a given mass force field and  is the viscous stress tensor defined as

, (1.1e)

where the viscosity coefficients are constants satisfying the conditions  and . It is
assumed that , where  is the ratio of specific heats.

The first nonlocal results concerning the mathematical theory of boundary value problems for the two-
and three-dimensional compressible Navier–Stokes equations were obtained by P.L. Lions. Specifically,
he showed in [1] that the basic boundary value problems for these equations with a pressure function

 have weak solutions for all  in the three-dimensional case and for all  in the two-
dimensional case. Later, the solvability of problem (1.1) for all  in the three-dimensional case and
for  in the two-dimensional case was proved in [2]. For a detailed representation of this theory, the
reader is referred to [3–5]. The solvability of problem (1.1) for  remains an open question. The
basic difficulty is associated with energy concentration (see [1, Chapter 6.6]). Specifically, a finite energy
can concentrate in arbitrarily small domains, forming so-called concentrations. To avoid them, one has
to prove that the total energy density of the gas is equipotentially absolutely integrable, i.e., has a better
estimate than that in the  norm. The problem simplifies considerably if the concentrations can be
localized. This is possible if the f low has additional symmetry properties.
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In this paper, we consider the case of a rotationally symmetric solution with possible concentrations
located near the axis of rotation. To formulate the results more precisely, we introduce the following nota-
tion. Let , , and  denote cylindrical coordinates in ,

. (1.2)
Let

(1.3)

Definition 1.1. A gas f low is said to be rotationally symmetric if ( , , , ) are independent of .
Special cases of rotationally symmetric f lows are axisymmetric f lows with  and spherically sym-

metric f lows with ( , ) depending only on . In the case of spherically symmetric f lows, the existence of
weak global solutions was proved for all γ > 1 in [6] (see also [7]). Axisymmetric and helically symmetric
flows were studied in [8, 9], where the existence of weak solutions was also proved for all γ > 1. However,
in contrast to the spherically symmetric case, the resulting solutions do not satisfy the equations on the
axis of symmetry.

Our goal is to weaken the constraint  for the case of rotationally symmetric f lows and to prove
the existence of weak solutions for all γ greater than some critical value . Hereafter, the f low
region and the data of the problem are assumed to satisfy the following conditions.

Condition 1.1.

•  is a bounded domain with a  boundary and is invariant under rotations about the  axis.

• The functions , , , , , , and  are independent of . Additionally, ,

, and

, (1.4)

where  is a positive constant.
The weak solution of problem (1.1) is defined as follows.

Definition 1.2. A pair ,  is said to be a weak solution of prob-
lem (1.1) if the following conditions are satisfied:

• The kinetic energy of the f low is bounded, i.e., , and the gas density is nonneg-
ative: .
• The integral identity

(1.5)

holds for any vector field  that vanishes in a neighborhood of  and .
• The integral identity

(1.6)

holds for any function  that vanishes in a neighborhood of .
Together with the basic problem (1.1), we consider the one-parameter family of regularized boundary

value problems

(1.7a)

, (1.7b)

, (1.7c)
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, (1.7d)

where the modified pressure function is given by

. (1.7e)

The existence of a weak solution to problem (1.7) was established in [3, 1]. The following proposition
is a consequence of those results.

Proposition 1.1. Let the domain  and the functions , , and  satisfy Conditions 1.1. Then problem (1.7)
has a rotationally symmetric weak solution ( , ) obeying the following conditions:

(i) The functions  and  satisfy the energy inequality

, (1.8)

where  is independent of .
(ii) The integral identity

(1.9)

holds for all vector fields  satisfying the conditions

.

(iii) The integral identity

(1.10)

holds for all smooth functions  vanishing in a neighborhood of .
Passing to a subsequence, we can assume that there exist ( , ) such that

(1.11)

Obviously, the limiting functions also satisfy the energy estimate

. (1.12)

To prove the solvability of problem (1.1), it is sufficient to show that each term in integral identities (1.9)
and (1.10) converges as  to the corresponding term in integral identities (1.5) and (1.6). According
to the general theory of the viscous compressible Navier–Stokes equations (see [4, 5]), the passage to the
limit will be substantiated if we prove that the energy density on any compact subset of  satisfies an esti-
mate stronger than the energy one. More precisely, it is sufficient to show that, for any compact set

,

, (1.13)

, (1.14)

where  is a constant independent of  or , while c is a constant depending on , but independent
of . It is well known (see [4, 5]) that estimate (1.13) is a consequence of estimate (1.14) and Bogovskii’s
lemma. Therefore, the solvability of problem (1.1) is reduced to the validity of inequality (1.14) for all
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. The determination of the minimum possible critical exponent  is an integral part of the
problem. The solution of this issue is given by the following theorem, which is the main result of this paper.

Theorem 1.3. Let Conditions 1.1 hold. Then, for any

and ,

,

where  and  are independent of .
This theorem implies that, for , problem (1.1) has a rotationally symmetric weak solution satis-

fying all the conditions of Definition 1.2. It should be noted that the condition  is satisfied by γ =
 (polyatomic gases), γ =  (diatomic gases), and γ =  (monatomic gases). The existence of weak

solutions for all γ > 1 remains an open question. The rest of this paper deals with the proof of Theorem 1.3.

2. LOCALIZATION AND ESTIMATES FOR POTENTIALS

2.1. Localization

The first step in the proof of Theorem 1.3 is to localize the equations in a neighborhood of an arbitrary
compact set . The localization procedure is based on the following auxiliary result.

Lemma 2.1. For any compact set , there are functions  with the properties

, (2.1)

and  and  are independent of the angular variable .

Proof. Let  be an arbitrary fixed monotone function such that  for  and
 for . Let

.

Define

The functions  and  are extended by zero to . The resulting functions are continuous and satisfy
the inequalities  and . Moreover,  in the -neighborhood of the compact set ,

 in the -neighborhood of the support of , and  in the -neighborhood of .
Since  is rotationally symmetric about the  axis, the function  is also rotationally symmetric. For
any , we define the averaging operator

,

where the standard averaging kernel  is a nonnegative even infinitely differentiable function compactly
supported in the interval [–1, 1]. Its integral over the number line is equal to 1. Obviously, for sufficiently
small , the functions  and  satisfy all the assumptions of the lemma.
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. (2.2)
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the following assertion.
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Here,  is a constant depending on , but independent of . Moreover, for any , the functions
( , ) satisfy the integral identity

(2.4)

where the functions , , and  vanish for  and satisfy the estimates

(2.5)

Proof. The compactness of the support of ( , ) follows from (2.2). Estimate (2.3) is a consequence
of (2.2) and energy estimate (1.8). To derive integral identity (2.4), we choose an arbitrary  and
replace  by  in integral identity (1.9). As a result,

(2.6)

Defining

and substituting these expressions into (2.6), we obtain (2.4). Estimates (2.5) are a straightforward conse-
quence of energy estimate (1.8).

2.2. Estimates of Potentials

In this section, we prove the basic estimates for the potentials of the functions . These estimates will
play a key role in the proof of Theorem 1.3. Consider a one-parameter family of integrals

. (2.7)

Proposition 2.1. Under the conditions of Lemma 2.2, for any ,

, (2.8)

where  is a constant independent of  or .
The proof relies on the following lemma.
Lemma 2.3. Under the conditions of Lemma 2.2, satisfies the estimate

, (2.9)

where the constant  is independent of .
Proof. For any , let
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where

From this, we find

Combining these relations with (2.10) and (2.5) gives the estimate

(2.11)

Recall that the functions  and  are supported by the compact set . Furthermore, for
almost every , we have

.

Applying estimates (2.5) yields

.

Substituting these inequalities into (2.11), we find that
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Sending  to zero produces the desired estimate (2.9).
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where . Since  is rotationally symmetric, we have

. (2.14)

This inequality is used to estimate the integral over the ball  on the right-hand side of (2.13).
Since  is rotationally symmetric, it is sufficient to consider the case . In this case, we
have the inclusion

,

which, together with (2.14), yields the estimate

It follows that

Repeating the above argument, we find

Substituting the resulting estimates into (2.13) yields
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Combining this result with inequality (2.9), we derive the desired estimate for :
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Proposition 2.2. Under the conditions of Proposition 2.1, we have the estimate

, (2.17)

where  is a constant independent of  or .

Proof. For any  and , let

.

Expression (2.7) for  implies the representation

(2.18)

Note that

Substituting this inequality into (2.18), we obtain the estimate

.

Combining this inequality with (2.8) yields

(2.19)

The standard estimates for the convolution of potentials show that

,

which, combined with (2.19), yields the inequality

To derive estimate (2.17), it remains to be noted that

Corollary 2.1. Under the conditions of Proposition 2.1, we have the estimate

, (2.20)

where  is a constant independent of .
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Proof. It is true that

(2.21)

where

Proposition 2.2 implies the estimate

. (2.22)

Since  is supported by the ball  and , we have

.

Moreover, the function  is supported by the layer . It follows that

. (2.23)

It remains to be noted that the desired estimate (2.20) is a direct consequence of (2.22) and (2.23).

3. PROOF OF THEOREM 1.3
3.1. Estimates for the Density in Sobolev Spaces

In this section, we apply Proposition 2.2 in order to estimate  in a negative Sobolev space. Recall
that, for any , the Hilbert space  consists of all slowly growing generalized functions

 with a finite norm

,

where  is the Fourier transform of a generalized function . The following proposition is the main
result of this section.

Proposition 3.1. For any ,

, (3.1)

where  is independent of .

Proof. Consider an arbitrary function  supported by the ball . Let .
It is well known that

(3.2)

where  is an absolute constant. Then

(3.3)
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It follows from (3.3) that

(3.4)

Introducing the function , we transform the first integral on the right-hand side of (3.4)
into the form

Note that  satisfies the inequality

,

which implies the estimate

Combining this with (2.20), we find

(3.5)

Note that  and  for . Combining this result with (2.17) yields

which, together with (3.5) and (3.4), gives the estimate
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Substituting  into (3.7) and noting that

,

we see that the inequality

(3.8)

holds for any function . Therefore, it remains valid for any function . Con-
sider functions , , defined by the relations

 if  and , and  otherwise.

The projectors  are defined as

.

Obviously, for any  and , we have

It follows from this inequality and (3.8) that, for any function ,

Setting  yields the estimate

.

Since  is arbitrary, it follows that

.

Noting that , , we finally obtain the desired estimate (3.1):

3.2. Proof of Theorem 1.3
According to Lemma 2.2 on localization, to prove the theorem, it is sufficient to show that, for any

, we have
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Obviously, the vector field  is supported by the ball  and satisfies the estimate

.

= vu h
γ+ / γ+ /
ε ερ = ρ∫ ∫

� �

v
4 4

( 1) 2 ( 1) 2udxdt dxdt

−
γ+ / γ− /γ −
ε ; ;ρ ≤ +∫ � � � �

�

v v v2 1 3 2 1 3

4

( 1) 2 ( 1) 2
( ( )) ( ( ))L H L Hdxdt cr cr

∞∈ �v 4
0 ( )C ∈ ;� �v 2 1 3( ( ))L H

ζ : →� �
3

k ≥ 0k

ζ ξ = ξ ≤ ζ ξ = ξ > ,0 0( ) 1    if   2; ( ) 0    if 2

ζ ξ =( ) 1k
+< ξ ≤ 12 2k k ≥ 1k ζ ξ =( ) 0k

: →� �
2 3 2 3( ) ( )kP L L

ξ = ζ ξ ξ^ ^( )( ) ( ) ( )k kP u u

∈ �s ∈ �
3( )su H

−

≥

≤ ≤∑� � �
3 0 3 3

2 2 21 2
( ) ( ) ( )

0

( ) 2 ( ) .s s
ks

kH H H
k

c s u P u c s u

∞∈ �v 4
0 ( )C

−

γ+ / γ+ / γ− /γ
ε ε ;

− γ− /γ − −
; ;

ρ = ρ ≤

+ ≤ + .

∫ ∫ � �

� �

� � � �

2 1 3

4 4

2 1 3 2 0 3

( 1) 2 ( 1) 2 ( 1)
( ( ))

2 ( 1) 2
( ( )) ( ( ))

( )

( 2 2 )

k k k L H

k k
k kL H L H

P dxdt P dxdt cr P

cr P c r r P

v v v

v v

− γ/ γ−= 2 (3 1)2 kr

γ+ / γ+ / γ−
ε ;ρ ≤∫ � �

�

v v 2 0 3

4

( 1) 2 ( 1) (3 1)
( ( ))( ) 2k

k k L HP dxdt c P

v

γ+ / γ+ / γ−
ερ ≤

�
2 4

( 1) 2 ( 1) (3 1)

( )
( ) 2k

k L
P c

λ = γ + γ − + δ( 1)/(3 1) δ > 0

−λ

γ+ / γ+ / − λ γ+ / γ− − λ − δ
ε ε;
ρ = ρ ≤ ≤ ≤ .∑ ∑ ∑

� � �
2 3 2 4

2 2( 1) 2 ( 1) 2 2 2 ( 1) (3 1) 2 2

( ( )) ( )
( ) 2 2 2k k k k

kL H L
k k k

P c c c

γ > γ = +* (7 73)/12

+θε ερ ≤
�

1 4

2

( )L
cv

> 0c ϑ > 0 ε > 0N

ε ε ε= ≤ = > .
� �

1 3 1 3( ) ( )( ) ( )    if ( ) ; ( ) 0    if ( )H Ht t t N t t NV v v V v

V + ≤x t R

∞ ; ≤
� �

1 3( ( ))L H NV



www.manaraa.com

398

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 57  No. 3  2017

WEIGANT, PLOTNIKOV

The subsequent argument relies on the following two lemmas.
Lemma 3.1. Let  and . Then, for almost every ,

, (3.10)

where  is a constant independent of , , or .

Proof. For a fixed , let . Obviously,

.

Applying the Hölder inequality

with exponents

,

we obtain

.

Since  is supported by the ball , it follows that

.

By the embedding theorems for fractional Sobolev spaces (see [10]), the embedding
 is continuous for . Setting  and noting that

 or , we obtain

for . Combining this estimate with  yields the desired esti-
mate (3.10).

Lemma 3.2. Let . Then there are constants  and  independent of ,  such that

. (3.11)

Proof. The kinetic energy density is represented as

,

where the constant  will be specified later. Formally applying the Hölder inequality yields
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With this choice of , inequality (3.12) becomes

where
.

Combining this result with the Young inequality yields the estimate

(3.13)

Since , inequality (3.1) in Proposition 3.1 and estimate (3.10) in Lemma 3.1 imply the following
estimate for the first integral on the right-hand side of (3.13):
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(3.15)

holds for all . In turn, the inequality  holds for all  close to 1 and for all  close to
 if

or, equivalently, . It is easy to see that the last inequality holds for all . Therefore,
there exist  and  such that  and

(3.16)

Here, we used the fact that  for . Combining estimates (3.13), (3.14), and (3.16) and noting
that  and , we derive the desired estimate (3.11).

Now, the proof of the main estimate (3.9) can be completed. Fix arbitrary  and introduce the
sets

The definition of  and inequality (3.11) imply the estimate
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On the other hand, the estimate  and the definition of the set  imply

. (3.19)
Combining (3.18) with (3.19), we obtain the estimate

,

which, together with (3.17), yields the inequality

Setting , we derive

,

where  is an arbitrary number greater than 1. It follows that the desired estimate (3.9), namely,

holds for any .
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